

Proposed, 2024.02

Summary Information

Module Code	7513CATSCI
Formal Module Title	Restoration Ecology
Owning School	Biological and Environmental Sciences
Career	Postgraduate Taught
Credits	15
Academic level	FHEQ Level 7
Grading Schema	50

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Sarah Dalrymple	Yes	N/A

Module Team Member

Contact Name	Applies to all offerings	Offerings
Partner Module Team		

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery
LJMU Partner Taught

Partner Teaching Institution

Institution Name

Centre for Alternative Technology

Learning Methods

Learning Method Type	Hours
Lecture	17
Practical	10
Seminar	3

Module Offering(s)

Offering Code	Location	Start Month	Duration
JAN-PAR	PAR	January	12 Weeks

Aims and Outcomes

Aims Study the role of ecosystems in sustainability with a focus on their role in biogeochemical cycling, as a sink for carbon and for providing other ecosystem functions. Investigate methods of restoration of habitats, including at landscape and global scales. Appreciate methods of setting restoration goals and assessing the success of restoration projects. Analyse the theoretical science and practical implications of species reintroductions, rewilding and invasive species control. Examine the value of policy, community involvement and public support, health and wellbeing, in habitat restoration and management.

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Critically evaluate methods for restoring ecological functions and debate restoration goals at local, national and international scales and in natural, semi natural or peri-urban environments.
MLO2	Undertake complex analyses of the theory, practical implications and complexities around restoring habitats.
MLO3	Propose and evaluate a habitat or ecosystem scale restoration projects, taking into account conservation biology targets as well as social, political and economic implications to critically evaluate its success.

Module Content

Outline Syllabus

Ecosystem change over time and space, biodiversity and connectedness. The science behind concepts such as rewilding, reintroduction and management of invasive species, physical habitat management approaches. Restoration of natural, semi-natural and peri-urban spaces. The role of communities, impact of restoration on communities and economies, and the impact of national and international legislation.

Module Overview

Additional Information

Indicative References:

Corlett, R.T.(2016) Restoration, reintroduction, and rewilding in a changing world. Trends in ecology & evolution, 31(6), pp.453-462.

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T.M., Bonin, C., Bruelheide, H., De Luca, E. and Ebeling, A. (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), p.574.

Leitao, R.P., Zuanon, J., Villéger, S., Williams, S.E., Baraloto, C., Fortunel, C., Mendonça, F.P. and Mouillot, D. (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B, 283(1828), p.20160084.

Miller, J.R. and Hobbs, R.J.(2007) Habitat restoration—Do we know what we're doing?. Restoration Ecology, 15(3), pp.382-390.

Perring, M.P., Standish, R.J., Price, J.N., Craig, M.D., Erickson, T.E., Ruthrof, K.X., Whiteley, A.S., Valentine, L.E. and Hobbs, R.J. (2015) Advances in restoration ecology: rising to the challenges of the coming decades. *Ecosphere*, *6*(8), pp.1-25.

POST (2016) Rewilding and Ecosystem Services, report http://researchbriefings.files.parliament.uk/documents/POST-PN-0537/POST-PN-0537.pdf

Assessments